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COMMENT 

Non-relativistic supersymmetry and gauge invariance 

B Anevat 
International Center for Theoretical Physics, Miramare, Trieste, Italy 

Received 24 June 1988 

Abstract. The gauge-invariance problem for a supersymmetric Schrodinger equation 
invariant under non-relativistic Euclidean supersymmetry is discussed. A gauge-invariant 
supermultiplet is considered which satisfies this equation. The equations of motion for its 
physical components are found to be relativistically invariant, which allows us to conclude 
that Lorentz invariance is a dynamical symmetry of the non-relativistic supersymmetric 
gauge problem. 

Non-relativistic supersymmetry may be used as an alternative method for a unified 
description of relativistic boson and fermion fields. In a paper by Sokatchev and 
Stoyanov (1986) a supersymmetrisation of quantum mechanics models is proposed 
and studied, based on the supersymmetric extension of the three-dimensional Euclidean 
group rather than the Lorentz group (Gates et a1 1983). A supersymmetric Schrodinger- 
like equation for a superfield wavefunction is defined there which possesses Euclidean 
invariance and is obviously non-relativistic: in it the time t is separated from the other 
coordinates of space like in ordinary quantum mechanics. The consequences of the 
non-relativistic supersymmetric equation for the physical components of the superfield 
wavefunction are that their equations of motion are the Lorentz-invariant Klein- 
Gordon and Dirac equations for the scalar and the spinor respectively. Thus Lorentz 
invariance appears as a dynamical symmetry of the considered non-relativistic super- 
symmetric quantum mechanics system. It has further been shown (Aneva et al 1987) 
that this important property of non-relativistic supersymmetry also survives in cases 
with an interaction. The original supersymmetric Schrodinger equation is redefined 
to contain different supersymmetrically invariant interaction terms, and it is found that 
it leads again to relativistic wave equations for particles interacting with external fields. 

In the present comment we discuss the problem of gauge invariance of a quantum 
theory based on non-relativistic supersymmetry. We consider a superwavefunction 
that forms a representation of the non-relativistic superalgebra and that remains 
invariant under the action of an Abelian gauge transformation. Such a superfield 
contains within its components the electric and magnetic field strengths of electro- 
dynamics. It satisfies the non-relativistic supersymmetric Schrodinger-like equation. 
We observe again that the equations of motion of the physical components of the 
superfield wavefunction are Lorentz invariant: they are the Weyl equation for the 
spinor field and the Maxwell equations for the electromagnetic field strengths. There- 
fore we conclude that Lorentz invariance appears as a dynamical symmetry of the 
non-relativistic gauge quantum system as well. In other words, we are able to obtain 
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the ‘on-shell’ description of an O(3, 1) supersymmetric gauge multiplet starting with 
an O(3) supersymmetric theory. 

For completeness, we record the supersymmetry algebra used in the following. Its 
even part consists of the three translation generators Pk and the three rotation generators 
I,, k =  1,2,3, satisfying the Lie algebra of the Euclidean group T3*0(3) .  The odd 
generators On, a = 1,2 ,  form an SU(2) complex spinor 

[ I k ,  OQl = - t ( a k Q ) a  (1) 

{ O m ,  Q p ) =  N ( a k E ) a p P k  (2) 

and satisfy 

where ak are the Pauli matrices and E = ia2 is the metric tensor in the spinor space 
& 2 =  -1, = - & Q P  = N is real and arbitrary. 

A representation of the algebra is realised in the superspace ( X k ,  e,) where xk are 
the coordinates of the three-dimensional Euclidean space and 8, are two-component 
complex spinors, Grassmann variables: 

eo}=0’ (3) 
In the superspace (xk ,  e,) the generators Pk and Qa are represented by the differential 
operators 

a p --i- 
axk k -  

d N  
Q, = i T + i  - ( a k e ) , P k .  ae 2 

In addition there exists a supercovariant differential operator 

(4) 

The supersymmetric Schrodinger equation proposed by Sokatchev and Stoyanov 
(1986) for the wavefunction + ( t ,  x, e) (the time t is added merely as a parameter and 
does not transform under the superalgebra) has the form 

(8) 
a 

K (x, e)4( t, X, e) = i - +( t ,  X ,  e). 
at  

The operator K ( x ,  e) constructed with the help of the supercovariant derivative 

(9) 
4 

N 
K ( X ,  e )  =1 D ~ D ,  

plays the role of the supersymmetric kinetic energy operator. 
After these preliminary comments we shall briefly sketch the gauge-invariance 

problem for the supersymmetric Schrodinger-like equation (8). Under an Abelian 
gauge transformation the superwavefunction +( t ,  x ,  0 )  transforms as 

+ G (  t, x, e) = exp[ -ih( t, x,  e ) ] + (  t ,  x ,  e) (10) 
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where the superfield A( t ,  x, 6) is the parameter of the U( 1 )  gauge transformation. In 
the straightforward generalisation of this formula to a non-Abelian compact Lie group, 
A( t ,  x, 0 )  becomes a matrix superfield A, = A,JY where the matrices J" are the 
Hermitian generators of the gauge group 

[J", J"] = it""J' 

in the representation under which the scalar superfield 4, transforms. 
According to the well known scheme of a generalisation to superspace of the 

geometric approach to Yang-Mills theories (Gates el al 1980, Sohnius et al 1980, Wess 
and Bagger 1983) the three-dimensional Euclidean supersymmetric Yang-Mills theory 
is described by the gauge-potential superfields 

xA( t ,  X, e )  = x;~, A = ( a ,  k )  (11) 

F A B  = D A X B  (12) 

and the corresponding Yang-Mills field strengths 

DBXA + i[ X A ,  XBlS - i T2,Xc 
with T$ = N ( c ~ ~ a ) , ~  and all other T terms zero. These field strengths are covariant 
under the gauge transformation 

XA + e-'*(XA - i D A )  e'". (13) 

To formulate a minimal manifestly supersymmetric gauge theory without superfluous 
fields one has to impose the gauge-covariant constraint 

F,p = 0 (14) 
and solve the corresponding Bianchi identities 

c (vAFBc -iTgBFDC) = o  
graded cyclic A,B,C 

subjected to this constraint. The symbol V A  denotes the gauge-covariant derivatives 
VA = DA + iX,. The result is a field strength spinor superfield W, ( f, x, e )  obeying the 
gauge-covariant constraint equation 

V"W, = o  (16) 
in terms of which the other field strengths are expressed: 

Fkol = ( I /  N ) ( V k W ) ,  F k l  = ( I /  N2)EklmVa(Vm w), .  
Since we are interested in the Abelian case we shall write the transformation (13)  for 
the spinor gauge-connection superfield X, ( t ,  x, e) in a component form. Expanding 
the superfields A( t ,  x, e )  and X,( t, x, e) in powers of 0, : 

A( r, X, e) = g (  t ,  x)  + eo&( t ,  X) + h( t ,  x)epe, 
(17) 

xo(t, x, e ) = ( C l a ( f , x ) + B ( t , x ) e , - ( N / 2 ) ( c + k e ) a A k ( f ,  x)-(N/4)Xa(t ,  x ) e p e p  

we obtain 

*: = *, + s a  B G =  B + 2 h  

A: = Ak - iakg x: = X a  - ( V k 3 k S ) , .  

Among the components of X, ( t ,  x, e )  there is a three-dimensional vector field Ak( f, x)  
subjected to the usual gauge transformation-the addition of a gradient term. We 
therefore identify this field with the electromagnetic field. 
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From the form of the transformation (18) it is evident that we can choose a special 
gauge (analogous to that known in the literature as the Wess-Zumino gauge) in which 
the gauge-potential superfield X ,  contains no other components but the vector Ak and 
the gauge-invariant spinor U, = x, + ( T k a k + , ,  aG U, = 0. 

With the help of the gauge-potential superfield X,(t ,  x, e) we can construct the 
corresponding supersymmetric field strengths, i.e. the spinor superfield W, 

(19) w, ( t, X ,  e )  = D ~ D , ~ ~  ( t, X ,  e )  
which may also be written in the form 

w,(t, X ,  e )=N((TkP&),  -D,Dpxp.  

It is readily seen that W, remains invariant under the gauge transformation (13). We 
can very easily compute its components in the special gauge X ,  = 
- ( N / ~ ) ( U ~ B ) , A , +  v,ee. They are 

w,(t,X, e ) =  ~,(t,X)+fN2&kln((Tn~),PkAI(f,X)-~~((+'~~u),ee (20) 

and we recognise, in the form of the supermultiplet W, given by (20), the most general 
solution of the Abelian constraint equation (16) D" W, = 0. 

We postulate now that the gauge-invariant superfield W, satisfies the super- 
symmetric Schrodinger-like equation 

a 
a t  (21) K ( x ,  e)W,(t,x, O)=i-  W,(t,x, e ) .  

In component form this equation is 

4 a 
- ( a k p k u ) ,  = i - U, 
N a t  

a N  - P; U, = -i - - ( a'Pf U )  ,. 
a t  4 

We observe that the first of these equations is again the Lorentz-invariant Weyl equation 
for the spinor U, : 

i(a'a,U), = O  

with a' = (a', ak)  and xo = (4/ N )  t, a, = a/axO. 
Equation (21c) needs no comment since it is the first equation squared. We are 

going to discuss the second equation (21b). Due to its matrix structure it is in fact a 
pair of equations for the complex vector G,, = ieklnakAl : 

div G = 0 (22a) 

a,G+icurl  G=O. (22b) 

Making use of the quaternion language we observe that (21 b)  can be rewritten in 
a quaternion form for the matrix G = G k U k  : 

& = O  (23) 
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where 9 = a,+aioi. With the help of the definition G, = E ,  +iH, ( E ,  and H, being 
the electric and magnetic field strengths) we recognise in (23) the quaternion form of 
the Maxwell equations. More precisely, (as has been proven by Weingarten (1973)) 
relation (23), together with the quaternion-conjugation condition 6 = -G fulfilled by 
the electromagnetic field matrix 6 ,  is equivalent to the pair of free Maxwell equations 
of electrodynamics: 

div E = 0 

div H = 0 

curl E = -aoH 

curl H = aoE. 

We obtain as a result that our original non-relativistic supersymmetric Schrodinger- 
like equation, satisfied by the gauge-invariant superfield wavefunction W,, leads to 
relativistic wave equations for the component fields, namely the Maxwell equations 
for the boson components and the Weyl equation for the spinor components. We 
observe again the appearance of a dynamical Lorentz symmetry which means, in fact, 
that the non-relativistic field strength superfield W, corresponds to an ‘on shell’ version 
of a O(3, 1)  supersymmetric free gauge theory. 

To summarise, we have considered, in the framework of non-relativistic three- 
dimensional Euclidean supersymmetry, a gauge-invariant supermultiplet which may 
be viewed as a supersymmetrisation of the electromagnetic field strengths. It describes 
(together with the corresponding gauge potential supermultiplet) an Abelian free gauge 
theory in a manifestly supersymmetric fashion and satisfies the previously proposed 
non-relativistic supersymmetric Schrodinger-like equation. The consequences of this 
supersymmetric equation for the physical components of the gauge-invariant super- 
multiplet are the relativistic Maxwell equations for the boson components and the 
Weyl equation for the fermion components. We therefore conclude that Lorentz 
invariance is a dynamical symmetry of the gauge sector of the non-relativistic quantum 
system. Thus non-relativistic O(3) supersymmetric theory provides the ‘on-shell’ 
description of an O(3, 1) supersymmetric gauge-invariant multiplet. 
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